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We cons ider  the convective stability of a non-Newtonian (nonlinearly viscous) liquid in a two- 
dimensional ver t ica l  channel. We solve a nonlinear boundary value problem concerning plane- 
parallel  s tat ionary convection for the case  of p iecewise- l inear  and power- law type theologi -  
cal  cha rac te r i s t i c s .  We discuss  the problem concerning the stability of equilibrium and of 
s ta t ionary motions. 

1. In [1, 2] an experimental  study was made of the origin of convection in a horizontal layer  of liquid 
heated f rom below. In [1] an attempt was made, with the aid of an energy method, to es t imate  the cr i t ica l  
Rayleigh number for power- law liquids. This at tempt must be considered unsuccessful.  If the initial v i s -  
cos i ty  is equal to zero or  infinity, as is the case  in power- law models, then there  is no finite c r i t i ca l  
Rayleigh number defining the stability boundary relative to small perturbations~ the equil ibrium with r e -  
spect to small per turbat ions  is e i ther  stable for  all Rayleigh numbers  (pseudo-plastics) or  is unstable for  
an a rb i t r a r i ly  small Rayleigh number (dilatational liquids). In judging stability, considerat ion must be 
given to finite amplitude perturbat ions.  As was noted in [3], the energy method used in [1] was applied 
incorrect ly .  

In the case  of a model with finite initial v i scos i ty  the notion of a cr i t ica l  Rayleigh number is justified. 
In this case,  as was shown in [2], measurement  of the cr i t ica l  t empera tu re  gradient yields a sufficiently 
exact method of determining the initial viscosi ty.  

Let a two-dimensional  infinite layer  of a aon-Newtonian liquid, bounded by the ver t ica l  planes x = :~ h, 
be heated f rom below. We consider  a s tat ionary plane-para l le l  convective motion for  which only the ve r t i -  
cal  veloci ty component is non-zero .  In this case  (the z axis is directed ver t ica l ly  upwards) 

v~ = v~ = 0, v. = v (x) (1.1) 

and the distr ibutions of t empera tu re  T, s t r e s s  T, and p r e s s u r e  p have the fo rm 

r = - - A z + e ( z ) ,  ~=T(x), p=p(z)  (1.2) 

Here A is the constant  ver t ica l  t empera tu re  gradient cor responding  to mechanical  equilibrium. 

F rom the convection equations, writ ten in the Boussinesq approximation, we obtain equations for  the 
functions v, 0, % and p 

T' ' t dp ~_ g~Az = C p -r g~9 = p ~z ' (1.3) 

~ O " + A v =  0 

Here p is the average  density, g is the gravitat ional  accelerat ion,  fl and • are ,  respect ively,  the thermal  
expansion and the rmal  diffusivity coefficients,  and C is a separation of var iables  constant.  The pr ime indi- 
ca tes  differentiation with respec t  to x. To Eqs. (1.3) must be added the rheologieal  relation connecting the 
shear  s t r e ss  with the veloci ty gradient  
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= x (v') (1.4) 

Along the channel boundaries the velocity vanishes and a linear temperature distribution is maintained 
along the vertical; in addition, we assume that the condition for the convective flow to be closed is satisfied, 
which means that the outflow through an arbitrary section is equal to zero. Thus we have 

h 

v(+-h)=O(~h)=O, _~vdx=O (1.5) 

Fur ther ,  we cons ider  a s ta t ionary  motion, cor responding  to the lower  level  of instabi l i ty of equi l i -  
b r ium.  In this  motion the ve loc i ty  prof i les  v and the t e m p e r a t u r e s  0 a r e  odd functions re la t ive  to the 
middle of the l ayer ,  x=0;  the separa t ion  constant  C = 0, and the c losu re  condition is sat isf ied.  

The p rob l em  we have formula ted  has a t r iv ia l  solution (v -- O= T = 0), co r respond ing  to equi l ibr ium 
(stable o r  unstable,  depending on the re la t ionship  among the p a r a m e t e r s )  of the liquid heated f r o m  below. 
Under ce r ta in  conditions nontr ivial  solutions a re  poss ible ;  we cons ider  these  in what follows. 

In the ease  of a Newtonian liquid the relat ion (1.4) is l inear  and nontr ivial  solutions exis t  only for  
ce r t a in  values  of the t e m p e r a t u r e  gradient  (Rayleigh number) ,  these  values  fo rming  a d i sc re t e  spec t rum 
(see [4]). These  c h a r a c t e r i s t i c  va lues  of the gradient  a re ,  at the s ame  t ime,  c r i t i ca l  values  f rom the point 
of view of the s tabi l i ty  of equil ibrium. The ampli tude of the c h a r a c t e r i s t i c  motions turns  out to be inde te r -  
minate. In the case  cons idered  here  of a non-Newtonian liquid the dependence of the s t r e s s  (1.4) on the 
veloci ty  gradient  is nonlinear.  This  leads to quali tat ive d i f ferences .  Stat ionary motions exist ,  not at i so -  
la ted points of the spec t rum,  but at all  the points of some in terva l  of va lues  of the t e m p e r a t u r e  gradient  
(Rayleigh number) .  The ampli tude of the motions,  by v i r tue  of the nonl inear i ty  of the boundary value p r o -  
blem,  is found to be de te rmina te .  

2. We cons ide r  a liquid with a p i ecewi se - l i nea r  rheological  c h a r a c t e r i s t i c  (Fig. 1). The dependence 
z(v ' )  is of the f o r m  

~IlV'  , - -  I" 0 ~ "1~ ~ 1' 0 

= / % + p'~ (v' - -  Vo'), �9 • Xo (2.1) 
t -- 1"o + ~2 (v' + Vo'), 1. ~< -- % 

The c h a r a c t e r i s t i c  (2.1) contains th ree  independent p a r a m e t e r s :  an initial v i scos i ty  ~1 and a l imit ing 
v i scos i ty  ~2; a lso ,  a l imi t ing tangential  s t r e s s  r 0 (v' 0 =~'o/~1). The v i scos i ty  is constant  on each of the 
s t r e s s  in te rva ls  in the functional dependence (2.1) and changes  by a jump at T = �9 T 0. A p i ecewi se - l i n ea r  
c h a r a c t e r i s t i c  can be cons ide red  as an approximat ion for  descr ib ing  nonlinearly v i scous  liquids with finite 
va lues  for  the initial and the l imit ing v iscos i ty .  F r o m  the re la t ion  (2.1) we can  obtain the re la t ions  c o r -  
responding to pseudo-p las t i c  (~ l  > ~2) and dllatat ional  (~ 1 < ~2) behavior  (curves  1 and 2 in Fig. 1). As 
l imi t ing  ca se s ,  we have a Blngham liquid (~1 = r curve  3) and the l imit ing case  of a di lat ional l iquid with 
ze ro  initial v i scos i ty  (pt=0,  cu rve  4). Fo r  a Newtonian liquid we have ~ 1 = ~ .  

Keeping in mind the cha r ac t e r i s t i c  (2.1), we wri te  the equations of p l ane -pa ra l l e l  convection in di -  
mens ionless  form.  We introduce the following units: dis tance h, ve loc i ty  x/h,  t e m p e r a t u r e  Ah, and s t r e s s  
~2 )~/h2. We can  then wri te  Eqs.  (1.3), the rheological  re la t ion  (2.1), and the boundary conditions (1.5) in 
the f o r m  

x' + B O  = O, O " + v = O  

/~v',  I T I < B  
lr= (B(l._t/a)sigav' +v'  ' J~:I>B (2.2) 

l 

v ( + t )  = 0(__t) = 0, I vdx=0 
--]. 

The boundary value problem (2.2) contains three dimensionless parameters: the Rayleigh number R, 
defined for the viscosity Dz; the dimensionless limiting stress B; and the ratio of viscosities, D. Thus, 

R ~ pg~Ah4 B = "r Ixt 
~,X ' " - ~ '  ix = " - ~  (2.3) 
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The  b a s i c  s t a t i o n a r y  mot ion  c o r r e s p o n d s  to  an odd so lu t ion  of the  p r o b l e m  (2.2) r e l a t i v e  to the  po in t  
x = 0 .  In v i ew  of t he  o d d n e s s  of  the  so lu t ion ,  i t  i s  su f f i c i en t  to  c o n s i d e r  the  r e g i o n  0-< x -  < 1. In t h i s  r e g i o n  
we c a n  s i n g l e  out  a m i d d l e  zone  a <- x -< b ( s u b s c r i p t  0) wi th  a s m a l l  v e l o c i t y  g r a d i e n t  and  v i s c o s i t y  ~1; 
the  zone 0 <- x -< a ( s u b s c r i p t  1) in which  T > ~'0, and in which  the  v e l o c i t y  g r a d i e n t  i s  p o s i t i v e  and in 
magn i tude  g r e a t e r  t han  the  l i m i t i n g  v a l u e ;  and the  zone  b - x -=- 1 ( s u b s c r i p t  2) wi th  a nega t ive  v e l o c i t y  
g r a d i e n t  and ~- < - T  0 (in z o n e s  1 and 2 we have  v i s c o u s  f low with v i s c o s i t y  ~2). 

F o r  each  of  t h e s e  z o n e s  we can  w r i t e  the  g e n e r a l  s o l u t i o n  of  Eqs .  (2.2). T a k i n g  into  a c c oun t  the  
v a n i s h i n g  of the  v e l o c i t y  and the  t e m p e r a t u r e  at  the  p o i n t s  x = 0  and x = l ,  we have 

v 1 = D ~ s i n r x + D ~ s h r x  

01 =, r -2 (D 1 sin r x  - -  D~ sh rx) 

vl =" B (1 - -  ~t -x) + r (D1  cos r x  + D2 ch rx) 

v, = C t sin r (1 - -  x) + Co sh r (1 - -  x) 

0 2 = r-~[Cx sin r (1 - -  x) - -  C~ sh r (1 ~ x)] (2.4) 
x~ = - - B ( I - -  p ~ - ' ) - - r [ C ~ c o s r ( t - - x )  + C ~ c h r ( i - - x ) ]  

v o = : E ~ s i n s z + E ~ c o s s x + E a s h s x + E ,  chsx  

0 0 =: s -~ (E~ sin sx  + E~ cos sx  - -  Ea sh sx  - -  E~ ch sx) 

x 0 =: ~ s (E  x c o s s x - E ~ s i n s x + E ~ c h s x +  E ~ s h s x )  

w h e r e  r =R1/4, s = (R/~) 1/4. 

F o r  the  d e t e r m i n a t i o n  of t he  e igh t  a r b i t r a r y  c o n s t a n t s  and  the  unknown p a r a m e t e r s  a and b, de f in ing  
the  l o c a t i o n s  of  the  v i s c o u s  zone b o u n d a r i e s ,  we have  m a t c h i n g  c o n d i t i o n s  at  the  p o i n t s  a and b (con t inu i ty  
of  the  v e l o c i t y ,  t e m p e r a t u r e ,  t h e r m a l  f low, and s t r e s s )  and a l s o  the  c o n d i t i o n s  de f in ing  the  l o c a t i o n  of the  
zone b o u n d a r i e s  

v~(a) = Vo (a), 
T, (a) = ~o (a), 

Vo (b) = v2 (b),  

% (b) = T2 (b), 

0, (~) = 00 (~), 
~o (a) = B  

Oo (b) = o, (b), 
xo (b) = - -  B 

O((a) -~ O o' (a) 

Oo' (b) = o ;  (b) 
( 2 . 5 )  

F r o m  an a n a l y s i s  of  the  
p o i n t  x = l / 2 ;  in p a r t i c u l a r ,  a = 

D 1 = _ _  

Do. - - - - ~  

E l ~--- 

E 3 ~ - -  

r e l a t i o n s  (2.5) i t  f o l l ows  tha t  a l l  the  p r o f i l e s  a r e  s y m m e t r i c  r e l a t i v e  to  t he  
1 - b .  T h e  c o n s t a n t s  a p p e a r i n g  in Eqs .  (2.4) a r e  equa l  to 

B [2~t", + (1 -]- V~) th ra th (p + (l  - -  V~) th ra  tg T] I~r6 cos ra 

B 
p.r~i ch r a  [ -  2~':" -~- (i -~ V~) tg ra tg (p + (t - -  ] /~)  tg ra th (p] 

B sin s/2 [2 tg ra th ra th q) + ~',', (1 - i  V~) tg ra + }~',', (t - -  V'~) th ra] 
~r5 cos q~ 

B sh s/2 
[ - -  2 tg ra th ra tg ~0 + ~v, (t ~- ] /~)  th ra + ~," (i  - -  ]/ '~) tg ra] ~r6 ch 

$ $ 

E ~ = c t g ~ E l ,  E 4 = - - c t h - - ~ E a ,  C I = D I ,  C ~ = D s  

6 = (t + ]/~-) (tg ra tg (p + th ra th ~) + (1 - -  ~f~-) (th ra tg (p -t- tg ra th  (p) 

(p = s ( ' / 2 - - a )  

The  r e l a t i o n  de f in ing  the  p a r a m e t e r  a a s  a func t ion  of  R and /~ has  the  f o r m  

(i + V~)2(tg ra tgcp  - -  th ra  th qD) + (1 - -  ~ f ~  ( tgra  thq~ - -  
- -  th ra tg (p) + 4~'atg (p th (p tg ra th ra - -  4~'/, = 0 

We g ive  the  e x p r e s s i o n  fo r  t he  m a x i m u m  f low v e l o c i t y  

( + )  B [ 2 t g r a t h r a ( s h T + s i n ~ ) +  vm ~- V~ = }~r6 cos ~ ch q~ 

-+- ~"' (t -',- ~ )  (tg ra ch q~ - -  th ra cos r + ~t'/, (! - -  ~ )  (th ra ch q~ - -  tg ra cos q~)] 

(2.6) 

(2.7) 
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3. The r e su l t s  obtained in solving numer ica l ly  the t ranscendenta l  equation (2.6) a re  shown in Fig. 2, 
which p r e sen t s  the fami ly  of cu rve s  a(r)  for  va r ious  va lues  of the v i s cos i t y  ra t io /~ .  F igures  3 and 4 show 
the dependence of the ampli tude of the veloci ty  on r.  The number ing  of the curves ,  namely,  0, 1, 2 . . . . .  11, 
c o r r e s p o n d s  to values  of ix= 0, 10 -4, 10 -2, 0.1, 0.5, 1, 1.2, 2, 4, 8, 16, oo. 

We cons ider  the pseudo-p las t i c  liquids (/z =/~1//~2 > 1). Analys is  of the re la t ions  (2.6), (2.7) shows 
that  in this  case  a nontr ivial  solution, co r respond ing  to p l ane -pa ra l l e l  convection,  ex i s t s  in the r e s t r i c t e d  
in terva l  of Rayleigh numbers  ~4 < R < / ~ ,  i .e. ,  r < r </zl/4w. 

The point r=/~1/41r is a c r i t i c a l  point in the sense  of the s tabi l i ty  of equi l ibr ium re la t ive  to smal l  
per turba t ions .  Small  pe r tu rba t ions  of equi l ibr ium c o r r e s p o n d  to smal l  v ' ,  i .e.,  to smal l  s t r e s s e s  T. Such 
per tu rba t ions  evolve in the same way as  in a Newtonian liquid with v i s cos i t y  coeff ic ient /~l  (the initial pa r t  
of the rheological  curve) .  An equi l ibr ium c r i s i s  re la t ive  to these  pe r tu rba t ions  is de te rmined  by the condi-  
t ion og~Ah4//~l • = ~ 4  Changing over  to the p a r a m e t e r s  R and Ix, we wri te  this  condition in the f o r m  R//~ = 
~4 1 4 1/4 , i .e. ,  r =/~ / ~.  For  r </~ ~ the equi l ibr ium is s table re la t ive  to smal l  pe r tu rba t ions ;  for  r > # t/4 
the equi l ibr ium is u n s t a b l e .  

In the region ~ < r </z 1/4 7r, in addition to the equi l ibr ium solution we also  have a nontr ivial  finite 
ampli tude solution with de te rmina te  va lues  of the p a r a m e t e r s  a and v m. With increas ing  r in th is  region 
the p a r a m e t e r  a ,  as  is evident f r o m  Fig. 2, d e c r e a s e s  monotonical ly  f r o m  1/2 to 0. The ampli tude v m is 
p ropor t iona l  to the d imens ion less  l imi t ing s t r e s s  B. With an inc rease  of r in the region ~ < r </~t/2 ~ t he  
ampli tude v m d e c r e a s e s  f r o m  infinity to some finite value B / ~ / ~  ; at  the point r =/~1/4~ the ampli tude under-  
goes a jump. 

We can obtain asymptot ic  exp re s s ions  for  a and v m f r o m  Eqs.  (2.6) and (2.7). Close to the lower  
c r i t i ca l  point r = 

I P (r - -  =) +..  v,~ = B (r i) (3.1) 
a =  2 ~(~--I) "' a~(r--:~) + " "  

Close to the upper  c r i t i ca l  point r = ~1/4 

6 i -- ~ (3.2) 
a~"  ~ ( p - - t )  

The finite ampli tude s ta t ionary  solution found he re  is unstable.  For  r < ~1/4~ the equi l ibr ium is 
s table re la t ive  to smal l  per turba t ions .  If we inser t  into the equi l ibr ium a per tu rba t ion  of finite ampli tude,  
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enter ing sufficiently far  f rom the l imits  of the initial port ion of the rheological  curve,  then l ayers  are  
formed in the flow with the smal le r  v i scos i ty  ~2- This means a lowering of the effective v iscos i ty  of the 
system,  as a resul t  of which a per turbat ion of sufficiently large amplitude is found to be increasing.  If the 
amplitude is less  than Vm, defined by the express ion (2.7), the per turbat ion decays;  ff the amplitude ex-  
ceeds Vm, the per turbat ion inc reases  without bound. 

Thus, in the case  ~ > 1 the equilibrium is stable with respec t  to small  per turbat ions  for  r < ~ 1/4 ~r and 
unstable for r >~1/4~. In the region ~r < r <~l /4r  the equilibrium is unstable relat ive to finite per turbat ions  
of amplitude g rea te r  than v m (~rigid ~ perturbation).  For  r < ~ the equilibrium is stable with respec t  to 
per turbat ions  of a r b i t r a r y  amplitude. 

When ~ > 1, there  are  no stable s ta t ionary motions of finite amplitude. This is connected with the 
specific geomet ry  of the problem in question, namely, p lane-para l le l  motions in an infinite layer .  In this 
case  the nonlinear convective t e r m s  in the equations of motion and heat conduction, i.e., the t e r m s  (vV) v 
and vV 0, vanish identically, and the nonlineari ty associa ted  with the rheological  curve  T(v') is of a destabi-  
lizing nature for  ~ > 1. 

With an increase  in ~ ,  the Rayleigh number,  defining the upper c r i t i ca l  point, inc reases  and tends 
towards  infinity f o r p  ~ oo. This l imiting case  co r responds  to a Bingham liquid (~l = ~o, ~2 finite). The 
equil ibrium is stable relat ive to small  per turbat ions  fo r  all R. Only a rigid per turbat ion of the convection 
is possible for R > 7r4; the c r i t i ca l  amplitude is given by the value 

2 4 B  t 
v m  ~ r a ( i  - -  2a)  ~ 3 ( t g  r a  ~-  t h  ra)  d -  r ( i  - -  2a )  

The boundary a of the v iscous  and plastic zones of flow is obtained f rom the equation 

r ( l  - -2a)  ( t g r a - - t h r a ) - - 4  = 0 

These express ions  are  obtained f rom Eqs. (2.6) and (2.7) in the l imit  as # - -  ~o and they coincide 
with the resu l t s  obtained in [5]. 

4. We cons ider  now the case  of a dflatational liquid (g = ~z 1//~z < 1). The dependence of the zone 
boundary a and the s ta t ionary amplitude Vm on the Rayleigh number is shown in Figs.  2 and 4. Jus t  as  in 
the pseudoplast ic  case ,  the point r = ~1/4~ is a c r i t ica l  point in the sense of the stabili ty of equilibrium 
relat ive to small  per turbat ions;  for r > ~#/4 ~ the equilibrium is unstable. Stationary motion of finite ampl i -  
tude exists  in the interval  ~1/4~ < r < r .  At the point r = ~ 1 / 4 r ,  through a jump, there  a r i s e s  a s ta t ionary 
motion with the amplitude v m = B / ~ r ~ ,  and as r increases ,  the amplitude v m inc reases  monotonically, tend- 
ing towards infinity as  r ~ ~r. The asymptotic  express ions  (3.1) and (3.2) continue to hold even in the 
case  ~ < 1. 

In the c a s e ~  < 1 a s ta t ionary p lane-para l le l  motion of finite amplitude in the region ~l/4,r < r < r is 
stable. Small per turbat ions  of equil ibrium in this region grow, and, upon the attainment of a l imiting s t r e s s  
in the flow, l aye rs  of large v iscos i ty  ar ise .  An increase  in the effective v iscos i ty  of the sys tem leads to a 
stabilization of per turbat ions  and tb the es tabl ishment  of a s ta t ionary amplitude Vm. For  r > r ,  there  can 
be no stable s ta t ionary p lane-para l le l  motion, since for  such Rayleigh numbers  small  per turbat ions  of 
equil ibrium increase  without bound, even in the case  of a Newtonian liquid with a large v iscos i ty  ~2. 

The case  of a l imiting dilatational cha rac te r i s t i c  (curve 4 in Fig. 1) is obtained for  ~ ~ 0 and B- -  0 
(the rat io B/~,  being the dimensionless  value of the limiting veloci ty  gradient v0' , s tays finite). F r o m  the 
general  express ions  (2.6) and (2.7) we obtain 

a - -  
2 , v , , =  tg -7- + th 

In this l imiting case  the equil ibrium is unstable for  an a rb i t r a r i ly  small  t empera tu re  gradient;  a 
stable s ta t ionary motion exists  in the region 0 < r < ~. 

5. We cons ider  a liquid whose behavior  co r r e sponds  to the theological  power- law 

T = k[v ' l  nsignv'  (5.1) 

where n is an exponent and k is the coefficient of consis tency.  To determine the s ta t ionary p lane-para l le l  
motion in a l ayer  of power- law liquid, the problem (1.3)-(1.5) must  be solved with the rheological  law (5.1). 
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dis tance h, ve loc i ty  (X/h) R 1/(n-l), and t e m p e r a t u r e  AhR l/(n-l) ,  We choose the following as our  units: 
where  R =  pgflAh2n+2/k)~n is the modified Rayleigh number .  

In d imens ion less  v a r i a b l e s  the p rob lem assume  s the f o r m  

[ [ v ' [ ~ s i g n v ' ] ' ~  0 = 0 ,  0 " + v  = 0 ]  

,'t (5.2) 
v ( •  i) = 0 ( +  i) : 0, .~ 0 

- - 1  

This  p rob lem does not contain the Rayleigh number  R; the exponent n is the only p a r a m e t e r  d e t e r -  
mining the solution. 

F o r  the purpose  of obtaining a numer ica l  solution the equations were  reduced to a s y s t e m  of four  
f i r s t  o r d e r  equations.  This  s y s t e m  was  in tegra ted  f r o m  the point x=0  to x =1 (we have in mind here  an odd 
solution). The miss ing  boundary conditions at the left  end were  de te rmined  by inspection until the boundary 
condit ions at the r ight  end could be sa t is f ied with sufficient accuracy .  In the numer ica l  in tegrat ion we used 
the R u n g e - K u t t a  and the " p r e d i c t o r - c o r r e c t e r  = methods.  As a r e su l t  we obtained the dis t r ibut ion v(x) and 
0 (x) fo r  va r ious  va lues  of n. In the case  n < i we have a pla teau on the ve loc i ty  p ro f i l e s  which is c h a r a c -  
t e r i s t i c  of pseudo-p las t i cs ;  for  n > 1 c o r n e r s  a re  fo rmed  alongside the point x = 1 / 2 .  These  p rof i l es  a re  
c lose  to those  given in [6] for  the case  of the flow of a power - l aw liquid in a channel heated f r o m  the side. 

Numer ica l  in tegrat ion of the s y s t em  (5.2) enables  us to de te rmine  the max imum dimens ion less  ve lo -  
c i ty  depending on n. The calcula t ions  lead to the empi r i ca l  dependence v m ~ ~ -4/(n-t) .  Taking note of the 
units chosen,  we can  r e p r e s e n t  the max imum dimensional  ve loc i ty  in the f o r m  

[ R ~L'(~-I) 

He re  R 0 = ~ is the c r i t i ca l  Rayleigh number  in the ca se  of a Newtonian liquid (n= l ) ,  and the coef f i -  
c ient  c is a slowly va ry ing  function of n. In the in terva l  1/3 <- n <- 2 c we have, with sufficient accuracy ,  
C =0.34. 

In the case n < 1 (pseudo-plastics) the amplitude v m of the velocity of the stationary motion decreases 
monotonically from infinity to zero as R increases; as n is varied we obtain a family of hyperbolas of varl- 
ous orders (the analog of the curves in Fig. 3). This case differs from the case of a piecewise-linear char ~ 
acteristic in that the equilibrium is stable with respect to small perturbations for all R. This is explained 
by the infinite initial viscosity of a power-law pseudo-plastic. For all R, however, we have instability with 
respect to finite perturbations exceeding the magnitude v m. A stationary mode with the velocity Vm, as in 
the case of a.pieeewise-linear characteristic, is unstable. 

For n > 1 (dilatational liquids), equilibrium is unstable with respect to small perturbations for all R, 
beginning with arbitrarily small perturbations (zero initial viscosity). The stationary plane-parallel mode 
with the velocity Vm is stable. The velocity Vm increases monotonically from zero depending upon the 
increase in R; the curves vm(R) for n > 1 constitute a family of parabolas of various orders (the analog of 
the curves in Fig. 4). 

The authors thank D. V. Lyubimov for his help in carrying out the calculations. 
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